001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.hash; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.Beta; 021import com.google.errorprone.annotations.Immutable; 022import java.security.Key; 023import java.util.ArrayList; 024import java.util.Arrays; 025import java.util.Iterator; 026import java.util.List; 027import java.util.zip.Adler32; 028import java.util.zip.CRC32; 029import java.util.zip.Checksum; 030import javax.crypto.spec.SecretKeySpec; 031import org.checkerframework.checker.nullness.qual.Nullable; 032 033/** 034 * Static methods to obtain {@link HashFunction} instances, and other static hashing-related 035 * utilities. 036 * 037 * <p>A comparison of the various hash functions can be found <a 038 * href="http://goo.gl/jS7HH">here</a>. 039 * 040 * @author Kevin Bourrillion 041 * @author Dimitris Andreou 042 * @author Kurt Alfred Kluever 043 * @since 11.0 044 */ 045@Beta 046public final class Hashing { 047 /** 048 * Returns a general-purpose, <b>temporary-use</b>, non-cryptographic hash function. The algorithm 049 * the returned function implements is unspecified and subject to change without notice. 050 * 051 * <p><b>Warning:</b> a new random seed for these functions is chosen each time the {@code 052 * Hashing} class is loaded. <b>Do not use this method</b> if hash codes may escape the current 053 * process in any way, for example being sent over RPC, or saved to disk. For a general-purpose, 054 * non-cryptographic hash function that will never change behavior, we suggest {@link 055 * #murmur3_128}. 056 * 057 * <p>Repeated calls to this method on the same loaded {@code Hashing} class, using the same value 058 * for {@code minimumBits}, will return identically-behaving {@link HashFunction} instances. 059 * 060 * @param minimumBits a positive integer (can be arbitrarily large) 061 * @return a hash function, described above, that produces hash codes of length {@code 062 * minimumBits} or greater 063 */ 064 public static HashFunction goodFastHash(int minimumBits) { 065 int bits = checkPositiveAndMakeMultipleOf32(minimumBits); 066 067 if (bits == 32) { 068 return Murmur3_32HashFunction.GOOD_FAST_HASH_32; 069 } 070 if (bits <= 128) { 071 return Murmur3_128HashFunction.GOOD_FAST_HASH_128; 072 } 073 074 // Otherwise, join together some 128-bit murmur3s 075 int hashFunctionsNeeded = (bits + 127) / 128; 076 HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded]; 077 hashFunctions[0] = Murmur3_128HashFunction.GOOD_FAST_HASH_128; 078 int seed = GOOD_FAST_HASH_SEED; 079 for (int i = 1; i < hashFunctionsNeeded; i++) { 080 seed += 1500450271; // a prime; shouldn't matter 081 hashFunctions[i] = murmur3_128(seed); 082 } 083 return new ConcatenatedHashFunction(hashFunctions); 084 } 085 086 /** 087 * Used to randomize {@link #goodFastHash} instances, so that programs which persist anything 088 * dependent on the hash codes they produce will fail sooner. 089 */ 090 @SuppressWarnings("GoodTime") // reading system time without TimeSource 091 static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis(); 092 093 /** 094 * Returns a hash function implementing the <a 095 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3 096 * algorithm, x86 variant</a> (little-endian variant), using the given seed value. 097 * 098 * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). 099 */ 100 public static HashFunction murmur3_32(int seed) { 101 return new Murmur3_32HashFunction(seed); 102 } 103 104 /** 105 * Returns a hash function implementing the <a 106 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3 107 * algorithm, x86 variant</a> (little-endian variant), using a seed value of zero. 108 * 109 * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). 110 */ 111 public static HashFunction murmur3_32() { 112 return Murmur3_32HashFunction.MURMUR3_32; 113 } 114 115 /** 116 * Returns a hash function implementing the <a 117 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">128-bit murmur3 118 * algorithm, x64 variant</a> (little-endian variant), using the given seed value. 119 * 120 * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). 121 */ 122 public static HashFunction murmur3_128(int seed) { 123 return new Murmur3_128HashFunction(seed); 124 } 125 126 /** 127 * Returns a hash function implementing the <a 128 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">128-bit murmur3 129 * algorithm, x64 variant</a> (little-endian variant), using a seed value of zero. 130 * 131 * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). 132 */ 133 public static HashFunction murmur3_128() { 134 return Murmur3_128HashFunction.MURMUR3_128; 135 } 136 137 /** 138 * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit 139 * SipHash-2-4 algorithm</a> using a seed value of {@code k = 00 01 02 ...}. 140 * 141 * @since 15.0 142 */ 143 public static HashFunction sipHash24() { 144 return SipHashFunction.SIP_HASH_24; 145 } 146 147 /** 148 * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit 149 * SipHash-2-4 algorithm</a> using the given seed. 150 * 151 * @since 15.0 152 */ 153 public static HashFunction sipHash24(long k0, long k1) { 154 return new SipHashFunction(2, 4, k0, k1); 155 } 156 157 /** 158 * Returns a hash function implementing the MD5 hash algorithm (128 hash bits). 159 * 160 * @deprecated If you must interoperate with a system that requires MD5, then use this method, 161 * despite its deprecation. But if you can choose your hash function, avoid MD5, which is 162 * neither fast nor secure. As of January 2017, we suggest: 163 * <ul> 164 * <li>For security: 165 * {@link Hashing#sha256} or a higher-level API. 166 * <li>For speed: {@link Hashing#goodFastHash}, though see its docs for caveats. 167 * </ul> 168 */ 169 @Deprecated 170 public static HashFunction md5() { 171 return Md5Holder.MD5; 172 } 173 174 private static class Md5Holder { 175 static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()"); 176 } 177 178 /** 179 * Returns a hash function implementing the SHA-1 algorithm (160 hash bits). 180 * 181 * @deprecated If you must interoperate with a system that requires SHA-1, then use this method, 182 * despite its deprecation. But if you can choose your hash function, avoid SHA-1, which is 183 * neither fast nor secure. As of January 2017, we suggest: 184 * <ul> 185 * <li>For security: 186 * {@link Hashing#sha256} or a higher-level API. 187 * <li>For speed: {@link Hashing#goodFastHash}, though see its docs for caveats. 188 * </ul> 189 */ 190 @Deprecated 191 public static HashFunction sha1() { 192 return Sha1Holder.SHA_1; 193 } 194 195 private static class Sha1Holder { 196 static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()"); 197 } 198 199 /** Returns a hash function implementing the SHA-256 algorithm (256 hash bits). */ 200 public static HashFunction sha256() { 201 return Sha256Holder.SHA_256; 202 } 203 204 private static class Sha256Holder { 205 static final HashFunction SHA_256 = 206 new MessageDigestHashFunction("SHA-256", "Hashing.sha256()"); 207 } 208 209 /** 210 * Returns a hash function implementing the SHA-384 algorithm (384 hash bits). 211 * 212 * @since 19.0 213 */ 214 public static HashFunction sha384() { 215 return Sha384Holder.SHA_384; 216 } 217 218 private static class Sha384Holder { 219 static final HashFunction SHA_384 = 220 new MessageDigestHashFunction("SHA-384", "Hashing.sha384()"); 221 } 222 223 /** Returns a hash function implementing the SHA-512 algorithm (512 hash bits). */ 224 public static HashFunction sha512() { 225 return Sha512Holder.SHA_512; 226 } 227 228 private static class Sha512Holder { 229 static final HashFunction SHA_512 = 230 new MessageDigestHashFunction("SHA-512", "Hashing.sha512()"); 231 } 232 233 /** 234 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 235 * MD5 (128 hash bits) hash function and the given secret key. 236 * 237 * @param key the secret key 238 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 239 * @since 20.0 240 */ 241 public static HashFunction hmacMd5(Key key) { 242 return new MacHashFunction("HmacMD5", key, hmacToString("hmacMd5", key)); 243 } 244 245 /** 246 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 247 * MD5 (128 hash bits) hash function and a {@link SecretKeySpec} created from the given byte array 248 * and the MD5 algorithm. 249 * 250 * @param key the key material of the secret key 251 * @since 20.0 252 */ 253 public static HashFunction hmacMd5(byte[] key) { 254 return hmacMd5(new SecretKeySpec(checkNotNull(key), "HmacMD5")); 255 } 256 257 /** 258 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 259 * SHA-1 (160 hash bits) hash function and the given secret key. 260 * 261 * @param key the secret key 262 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 263 * @since 20.0 264 */ 265 public static HashFunction hmacSha1(Key key) { 266 return new MacHashFunction("HmacSHA1", key, hmacToString("hmacSha1", key)); 267 } 268 269 /** 270 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 271 * SHA-1 (160 hash bits) hash function and a {@link SecretKeySpec} created from the given byte 272 * array and the SHA-1 algorithm. 273 * 274 * @param key the key material of the secret key 275 * @since 20.0 276 */ 277 public static HashFunction hmacSha1(byte[] key) { 278 return hmacSha1(new SecretKeySpec(checkNotNull(key), "HmacSHA1")); 279 } 280 281 /** 282 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 283 * SHA-256 (256 hash bits) hash function and the given secret key. 284 * 285 * @param key the secret key 286 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 287 * @since 20.0 288 */ 289 public static HashFunction hmacSha256(Key key) { 290 return new MacHashFunction("HmacSHA256", key, hmacToString("hmacSha256", key)); 291 } 292 293 /** 294 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 295 * SHA-256 (256 hash bits) hash function and a {@link SecretKeySpec} created from the given byte 296 * array and the SHA-256 algorithm. 297 * 298 * @param key the key material of the secret key 299 * @since 20.0 300 */ 301 public static HashFunction hmacSha256(byte[] key) { 302 return hmacSha256(new SecretKeySpec(checkNotNull(key), "HmacSHA256")); 303 } 304 305 /** 306 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 307 * SHA-512 (512 hash bits) hash function and the given secret key. 308 * 309 * @param key the secret key 310 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 311 * @since 20.0 312 */ 313 public static HashFunction hmacSha512(Key key) { 314 return new MacHashFunction("HmacSHA512", key, hmacToString("hmacSha512", key)); 315 } 316 317 /** 318 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 319 * SHA-512 (512 hash bits) hash function and a {@link SecretKeySpec} created from the given byte 320 * array and the SHA-512 algorithm. 321 * 322 * @param key the key material of the secret key 323 * @since 20.0 324 */ 325 public static HashFunction hmacSha512(byte[] key) { 326 return hmacSha512(new SecretKeySpec(checkNotNull(key), "HmacSHA512")); 327 } 328 329 private static String hmacToString(String methodName, Key key) { 330 return String.format( 331 "Hashing.%s(Key[algorithm=%s, format=%s])", 332 methodName, key.getAlgorithm(), key.getFormat()); 333 } 334 335 /** 336 * Returns a hash function implementing the CRC32C checksum algorithm (32 hash bits) as described 337 * by RFC 3720, Section 12.1. 338 * 339 * <p>This function is best understood as a <a 340 * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a 341 * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 342 * 343 * @since 18.0 344 */ 345 public static HashFunction crc32c() { 346 return Crc32cHashFunction.CRC_32_C; 347 } 348 349 /** 350 * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash bits). 351 * 352 * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code 353 * HashCode} produced by this function, use {@link HashCode#padToLong()}. 354 * 355 * <p>This function is best understood as a <a 356 * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a 357 * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 358 * 359 * @since 14.0 360 */ 361 public static HashFunction crc32() { 362 return ChecksumType.CRC_32.hashFunction; 363 } 364 365 /** 366 * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash bits). 367 * 368 * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code 369 * HashCode} produced by this function, use {@link HashCode#padToLong()}. 370 * 371 * <p>This function is best understood as a <a 372 * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a 373 * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 374 * 375 * @since 14.0 376 */ 377 public static HashFunction adler32() { 378 return ChecksumType.ADLER_32.hashFunction; 379 } 380 381 @Immutable 382 enum ChecksumType implements ImmutableSupplier<Checksum> { 383 CRC_32("Hashing.crc32()") { 384 @Override 385 public Checksum get() { 386 return new CRC32(); 387 } 388 }, 389 ADLER_32("Hashing.adler32()") { 390 @Override 391 public Checksum get() { 392 return new Adler32(); 393 } 394 }; 395 396 public final HashFunction hashFunction; 397 398 ChecksumType(String toString) { 399 this.hashFunction = new ChecksumHashFunction(this, 32, toString); 400 } 401 } 402 403 /** 404 * Returns a hash function implementing FarmHash's Fingerprint64, an open-source algorithm. 405 * 406 * <p>This is designed for generating persistent fingerprints of strings. It isn't 407 * cryptographically secure, but it produces a high-quality hash with fewer collisions than some 408 * alternatives we've used in the past. 409 * 410 * <p>FarmHash fingerprints are encoded by {@link HashCode#asBytes} in little-endian order. This 411 * means {@link HashCode#asLong} is guaranteed to return the same value that 412 * farmhash::Fingerprint64() would for the same input (when compared using {@link 413 * com.google.common.primitives.UnsignedLongs}'s encoding of 64-bit unsigned numbers). 414 * 415 * <p>This function is best understood as a <a 416 * href="https://en.wikipedia.org/wiki/Fingerprint_(computing)">fingerprint</a> rather than a true 417 * <a href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 418 * 419 * @since 20.0 420 */ 421 public static HashFunction farmHashFingerprint64() { 422 return FarmHashFingerprint64.FARMHASH_FINGERPRINT_64; 423 } 424 425 /** 426 * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in a uniform manner 427 * that minimizes the need for remapping as {@code buckets} grows. That is, {@code 428 * consistentHash(h, n)} equals: 429 * 430 * <ul> 431 * <li>{@code n - 1}, with approximate probability {@code 1/n} 432 * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) 433 * </ul> 434 * 435 * <p>This method is suitable for the common use case of dividing work among buckets that meet the 436 * following conditions: 437 * 438 * <ul> 439 * <li>You want to assign the same fraction of inputs to each bucket. 440 * <li>When you reduce the number of buckets, you can accept that the most recently added 441 * buckets will be removed first. More concretely, if you are dividing traffic among tasks, 442 * you can decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and 443 * {@code consistentHash} will handle it. If, however, you are dividing traffic among 444 * servers {@code alpha}, {@code bravo}, and {@code charlie} and you occasionally need to 445 * take each of the servers offline, {@code consistentHash} will be a poor fit: It provides 446 * no way for you to specify which of the three buckets is disappearing. Thus, if your 447 * buckets change from {@code [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will 448 * assign all the old {@code alpha} traffic to {@code bravo} and all the old {@code bravo} 449 * traffic to {@code charlie}, rather than letting {@code bravo} keep its traffic. 450 * </ul> 451 * 452 * <p>See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">Wikipedia article on 453 * consistent hashing</a> for more information. 454 */ 455 public static int consistentHash(HashCode hashCode, int buckets) { 456 return consistentHash(hashCode.padToLong(), buckets); 457 } 458 459 /** 460 * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a uniform manner that 461 * minimizes the need for remapping as {@code buckets} grows. That is, {@code consistentHash(h, 462 * n)} equals: 463 * 464 * <ul> 465 * <li>{@code n - 1}, with approximate probability {@code 1/n} 466 * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) 467 * </ul> 468 * 469 * <p>This method is suitable for the common use case of dividing work among buckets that meet the 470 * following conditions: 471 * 472 * <ul> 473 * <li>You want to assign the same fraction of inputs to each bucket. 474 * <li>When you reduce the number of buckets, you can accept that the most recently added 475 * buckets will be removed first. More concretely, if you are dividing traffic among tasks, 476 * you can decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and 477 * {@code consistentHash} will handle it. If, however, you are dividing traffic among 478 * servers {@code alpha}, {@code bravo}, and {@code charlie} and you occasionally need to 479 * take each of the servers offline, {@code consistentHash} will be a poor fit: It provides 480 * no way for you to specify which of the three buckets is disappearing. Thus, if your 481 * buckets change from {@code [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will 482 * assign all the old {@code alpha} traffic to {@code bravo} and all the old {@code bravo} 483 * traffic to {@code charlie}, rather than letting {@code bravo} keep its traffic. 484 * </ul> 485 * 486 * <p>See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">Wikipedia article on 487 * consistent hashing</a> for more information. 488 */ 489 public static int consistentHash(long input, int buckets) { 490 checkArgument(buckets > 0, "buckets must be positive: %s", buckets); 491 LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input); 492 int candidate = 0; 493 int next; 494 495 // Jump from bucket to bucket until we go out of range 496 while (true) { 497 next = (int) ((candidate + 1) / generator.nextDouble()); 498 if (next >= 0 && next < buckets) { 499 candidate = next; 500 } else { 501 return candidate; 502 } 503 } 504 } 505 506 /** 507 * Returns a hash code, having the same bit length as each of the input hash codes, that combines 508 * the information of these hash codes in an ordered fashion. That is, whenever two equal hash 509 * codes are produced by two calls to this method, it is <i>as likely as possible</i> that each 510 * was computed from the <i>same</i> input hash codes in the <i>same</i> order. 511 * 512 * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all 513 * have the same bit length 514 */ 515 public static HashCode combineOrdered(Iterable<HashCode> hashCodes) { 516 Iterator<HashCode> iterator = hashCodes.iterator(); 517 checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); 518 int bits = iterator.next().bits(); 519 byte[] resultBytes = new byte[bits / 8]; 520 for (HashCode hashCode : hashCodes) { 521 byte[] nextBytes = hashCode.asBytes(); 522 checkArgument( 523 nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); 524 for (int i = 0; i < nextBytes.length; i++) { 525 resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]); 526 } 527 } 528 return HashCode.fromBytesNoCopy(resultBytes); 529 } 530 531 /** 532 * Returns a hash code, having the same bit length as each of the input hash codes, that combines 533 * the information of these hash codes in an unordered fashion. That is, whenever two equal hash 534 * codes are produced by two calls to this method, it is <i>as likely as possible</i> that each 535 * was computed from the <i>same</i> input hash codes in <i>some</i> order. 536 * 537 * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all 538 * have the same bit length 539 */ 540 public static HashCode combineUnordered(Iterable<HashCode> hashCodes) { 541 Iterator<HashCode> iterator = hashCodes.iterator(); 542 checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); 543 byte[] resultBytes = new byte[iterator.next().bits() / 8]; 544 for (HashCode hashCode : hashCodes) { 545 byte[] nextBytes = hashCode.asBytes(); 546 checkArgument( 547 nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); 548 for (int i = 0; i < nextBytes.length; i++) { 549 resultBytes[i] += nextBytes[i]; 550 } 551 } 552 return HashCode.fromBytesNoCopy(resultBytes); 553 } 554 555 /** Checks that the passed argument is positive, and ceils it to a multiple of 32. */ 556 static int checkPositiveAndMakeMultipleOf32(int bits) { 557 checkArgument(bits > 0, "Number of bits must be positive"); 558 return (bits + 31) & ~31; 559 } 560 561 /** 562 * Returns a hash function which computes its hash code by concatenating the hash codes of the 563 * underlying hash functions together. This can be useful if you need to generate hash codes of a 564 * specific length. 565 * 566 * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash 567 * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}. 568 * 569 * @since 19.0 570 */ 571 public static HashFunction concatenating( 572 HashFunction first, HashFunction second, HashFunction... rest) { 573 // We can't use Lists.asList() here because there's no hash->collect dependency 574 List<HashFunction> list = new ArrayList<>(); 575 list.add(first); 576 list.add(second); 577 list.addAll(Arrays.asList(rest)); 578 return new ConcatenatedHashFunction(list.toArray(new HashFunction[0])); 579 } 580 581 /** 582 * Returns a hash function which computes its hash code by concatenating the hash codes of the 583 * underlying hash functions together. This can be useful if you need to generate hash codes of a 584 * specific length. 585 * 586 * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash 587 * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}. 588 * 589 * @since 19.0 590 */ 591 public static HashFunction concatenating(Iterable<HashFunction> hashFunctions) { 592 checkNotNull(hashFunctions); 593 // We can't use Iterables.toArray() here because there's no hash->collect dependency 594 List<HashFunction> list = new ArrayList<>(); 595 for (HashFunction hashFunction : hashFunctions) { 596 list.add(hashFunction); 597 } 598 checkArgument(list.size() > 0, "number of hash functions (%s) must be > 0", list.size()); 599 return new ConcatenatedHashFunction(list.toArray(new HashFunction[0])); 600 } 601 602 private static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction { 603 604 private ConcatenatedHashFunction(HashFunction... functions) { 605 super(functions); 606 for (HashFunction function : functions) { 607 checkArgument( 608 function.bits() % 8 == 0, 609 "the number of bits (%s) in hashFunction (%s) must be divisible by 8", 610 function.bits(), 611 function); 612 } 613 } 614 615 @Override 616 HashCode makeHash(Hasher[] hashers) { 617 byte[] bytes = new byte[bits() / 8]; 618 int i = 0; 619 for (Hasher hasher : hashers) { 620 HashCode newHash = hasher.hash(); 621 i += newHash.writeBytesTo(bytes, i, newHash.bits() / 8); 622 } 623 return HashCode.fromBytesNoCopy(bytes); 624 } 625 626 @Override 627 public int bits() { 628 int bitSum = 0; 629 for (HashFunction function : functions) { 630 bitSum += function.bits(); 631 } 632 return bitSum; 633 } 634 635 @Override 636 public boolean equals(@Nullable Object object) { 637 if (object instanceof ConcatenatedHashFunction) { 638 ConcatenatedHashFunction other = (ConcatenatedHashFunction) object; 639 return Arrays.equals(functions, other.functions); 640 } 641 return false; 642 } 643 644 @Override 645 public int hashCode() { 646 return Arrays.hashCode(functions); 647 } 648 } 649 650 /** 651 * Linear CongruentialGenerator to use for consistent hashing. See 652 * http://en.wikipedia.org/wiki/Linear_congruential_generator 653 */ 654 private static final class LinearCongruentialGenerator { 655 private long state; 656 657 public LinearCongruentialGenerator(long seed) { 658 this.state = seed; 659 } 660 661 public double nextDouble() { 662 state = 2862933555777941757L * state + 1; 663 return ((double) ((int) (state >>> 33) + 1)) / 0x1.0p31; 664 } 665 } 666 667 private Hashing() {} 668}